

topic topic Light metals Aluminium and its alloys Magnesium and its alloys Titanium and its alloys Heavy metals Copper and its alloys Other metals with technical importance

Z	att Physical	M Û E G Y E T E M	1782			
		ρ (gcm ⁻³)	R _{ен} (MPa)	R _{eH} /ρ	T _{creep} (°C)	
	Al and alloys	2.70	25-650	9-240	150-250	
	Mg and alloys	1.70	70-270	40-160	150-250	
	Ti and alloys	4.50	170-1300	38-300	400-600	
	Ве	1.82	100-700	50-380	~250	
	Cu and alloys	8.94	60-1400	7-150		
	Structural steels	7.90	180-1600	25-200	400-600	
						4

Zatt	Physical and mechanical character					Y E T		
		R _m	E	ρ	R _m /p	Ε/ρ	\$/t	
	Cast iron	200	110	7150	280	154	900	
	Steel							
	-soft	450	210	7860	573	267	600	
	-hard	1500	210	7800	1923	269	800	
	-corr. Res.	500	210	7930	631	265	2700	
	Aluminium							
	-soft	70	70	2710	258	258	2000	
	-hard	450	70	2800	1601	250	2500	
	Copper							
	-soft	140	120	8930	156	134	2000	
	-hard	400	120	8500	471	141	2000	
	Magnesium	250	42	1740	1436	241	6000	
	Titanium	1200	120	4580	2620	262	20000	

5

Aluminum

- Light, low density (ρ=2.7 gcm⁻³)
- Low melting temperature (660°C)
- Good electric conductor (~2/3 of that of Cu)
- Good heat conductor
- FCC lattice
- Good formability, Z~90%, cold and hot forming
- Good corrosion resistance (surface oxide layer)
- Low strength
 - R_m=40...120 MPa, R_{p0.2}=20...60 MPa
- Low Young's modulus
- E=70 GPa

Zatt General phase diagram Α TA Liquid phase С 600lpha + Liquid ph в Θ + Liquid ph Θ α Temperature (°C) D Е F $\alpha + \Theta$ 400 н lG Al_xMe_y AI Concentration (weight%)

Zatt D		signation system	MÜEGYETEM 1782		
		Formable	Castable		
AI		1xxx	1xx.x		
Al-Cu		2xxx	2xx.x		
Al-Mn		Зххх			
Al-Si		4xxx	4xx.x		
Al-Si(-Cu/Mg)			3xx.x		
Al-Mg		5xxx	5xx.x		
Al-Mg-Si		6ххх			
Al-Zn(-Mg)		7xxx	7xx.x		
Al-Li		8xxx			
Other elements		9xxx	9xx.x		
Al-Sn			8xx.x		
Not used			6xx.x		

Zatt 3xxx < < 2% Mn alloying - Above compounds which spoils the properties • Non-heat treatable, can be strengthened by cold forming Modest strength Good formability Good weldability Good anodizability Packaging, kitchenware, architecture

16

- Higher Si %: alloys for casting
 - Low melting point, low shrinkage, good fluidity
- Adding Mg \rightarrow heat treatable alloy(6xxx) • strength increasing
- Engines, castings for modest loads and sizes, pistons

Formable all	Cast alloys		
Non-heat treateble (weldable) Good corrosion resistance Good electric condictivity Good formability	heat treateble - high-strength alloys	Non-heat treateble	heat treateble
AI-Mn AI-Mg AI-Mg-Si AI-Mg _{0.5} -Si _c AI-Mg-Li AI-Mg-Li	Al-Mg-Si Al-Mg-Li Al-Li-Mg Al-Cu-Mg Al-Cu-Li Al-Cu-Li-Mg Al-Zn-Mg Al-Li-Cu-Mg Al-Zn-Cu-Mg	Al-Si Al-Mg	Al-Si-Mg Al-Si-Cu Al-Mg-Si Al-Cu Al-Cu-Ni Al-Zn-Si Al-Zn-Mg

23

Zatt Casting of ingots and billets

- For the purpose of rolling or extrusion
- Basic procedures
 - Mold casting
 - Direct chill (or semi continuous) casting
- Possibilities to increase quality
 - Direct chill casting in electromagnetic mold
 - Hot top mold direct chill casting
 - Descaling of ingots

Zatt Technological properties

• Good machinability (less smearing than aluminum)

1

33

- Can be casted in faster cycles
- Longer lifetime for casting-dies
- High-end cameras, technical appliances, structural parts, airplane and rocket parts

35

- Ce, La, Nd, Pr, precipitation, better creep resistance
- Mg-Al-Zn-Cu alloys

Engine houses

On most aircraft, use of titanium was limited by the costs involved; it was generally used only in components exposed to the highest temperatures, such as exhaust fairings and the leading edges of wings. On the SR-71, titanium was used for 85% of the structure, with much of the rest polymer composite materials.

Copper, containing oxygen(>99,9% Cu) Good electric and heat conductivity Produced by electrolysis (Cu-ETP) "Electrolytic Tough Pitch" Formerly refined (Cu-FRHC and FRTP (casting)) "Fire-Refined Tough-Pitch High Conductivity" Oxygen-free (deoxidized) copper Deoxidizing with phosphorous – good weldability Phosphorous spoils the electric conductivity Cu-DHP: 0.013-0.5% P, Cu-DLP: 0.004-0.012% P

• Oxygen-free, high conductivity copper

- Cu-OF: >99.95 Cu, Cu-OFE: >99.99% Cu (electronics)
- Deoxidizing refinement

43

43

Cu-Ag Minimal silver alloying Recrystallization temperature increases from 200°C to 300°C E.g.: welding and soldering gun parts Cu-Cd Strength, fatigue limit, creep limit doubled by cold working E.g.: spot-welding Toxic, prohibited Cu-Te Enhanced machinability and strength, higher

- recrystallizations temperature,
- Conductivity decreases a little
- E.g.: laser-nozzle

44

Zαtt Low alloyed copper alloys II.

- Cu-Cr
- 450 MPa strength by precipitation hardening
 E.g.: spot welding electrode, brake, high-performance switches
- Cu-Be and Cu-Co-Be
- 500 MPa strength by precipitation hardening, keeps this strength up to 300°C
 ¼ conductivity
- E.g.: springs, wisher, membrane, nonsparking switches

Zatt Aluminum bronzes **^___`**@``_ Aluminum bronzes (cupro-aluminum) • 4-14% Al resist to seawater, stress corrosion and corrosionfatigue, high strength • Unalloyed: good formability, one or more phase (strength increases, toughness decreases) • Alloyed: Fe, Ni, Mn alloying • Enhanced corrosion resistance and strength • Ship propellers, turbine blades • Heat exchanger plates and tubes

52

53

Zatt Nickel bronzes

Nickel bronzes (cupro-nickels)

- Unlimited solubility between Cu and Ni

- Good resistance in high-speed-streaming seawater
- Few percent of Mn and Fe can be added
- Sheets, strips for general purpose, tubes for heat exchangers
- Constantan: 40-45% Ni content, conductivity does not change in wide range of temperature \rightarrow strain gauges
- Nickel silver (alpacca): Cu-Ni-Zn alloy, between brass and cupro-nickels

- One-phase alloys with good formability

- Hot workable, two-phase alloy with good machinability

• Unalloyed – chemical industry nickel

- two subtypes depending on C% – soft, can be strengthened by cold working, toughness decreases but, significant even at low temperatures
- Ni-Cu Alloys– Monel

 28-34% Cu, high pressure water, steam and seawater pipes, brass instrument, evaporators

- Ni-Cr-Fe and Ni-Mo alloys– Inconel, Hastalloy, Incoloy, Nimonic
 - Individual corrosion resistance
 - Ni-Cr-Fe: vitriolic, phosphoric acidic, seawater, chloric
 - Ni-Mo: hydrochloric, hydrogen fluoride environment
 - Ni-Cr-Mo: wide corrosion resistance, pitting and crevice corrosion resistance

58

Zatt	Heat resistant nickel all	Oys
 Ni-Cr an Excel resist Resist 	d Ni-Cr-Fe alloys lent strength at high temper tance tance heaters, resist to hot a	atures, creep air
• Fe-Ni-Cr • Main • Perfo sulfid	alloys component is Fe, not typica orm well even in oxidizing, ca ling environment	Il Ni alloys Irbonizing and

Catt Special nickel alloys

- Resistance heaters: Ni-20Cr-Si, CuNi45 (Constantan)
- Thermocouples: K type 90Ni-9Cr and 94Ni-AlMn-Fe-Si-Co
- Soft magnetic materials: Permalloy
- Alloys with low thermal expansion: Invar36, Kovar
 - Tooling for aerospace composites, standards of length, measuring devices, thermostat rods, laser components, etc.
- Intermetallic alloys, Ni₃Al, YS 700 MPa at 800 °C!
- Maraging X2NiCoMo18-9-5

-Martensitic, precipitation hardenable

• Shape memory Ni-Ti alloys

61

61

Zatt Zinc alloys Zn-Al (eutectic at ~5% Al)

• Hypoeutectic, ~4% Al

• End of 1930s, Zamak alloy (Zn-Al-Mg-Cu)

• Hypereutectic, 6-12% Al

Investment casting

- 1950s: 6-8% Al, Zamak, heat and wear resistance
- Tonsul alloy + Mg, jewelry alloys
- Ilzro: 12% Al and 1% Cu, gravity casting, larger parts, e.g. office chair leg

64

64

Att Zinc alloys Hypereutectoid alloys -25-35% Al content -Good strength, up to 400 MPa yield stress -Porous surface – containing lubricant Al free Zn-Cu-Ti alloys -Zn-Cu: cast building industry parts, coins, deep draw tools -Zn Cu Ti and Zn Cu Cr Ti: large cand mold cast

-Zn-Cu-Ti and Zn-Cu-Cr-Ti: large sand-mold cast parts, roof structures, 300 MPa yield stress

-Zn-Pb-Cd-Fe: batteries' case

